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EVALUATION
1. This report is the Final Report on the contract. It covers

research done on radiation from thin slots in perfectly-conducting

planar and cylindrical structures during the 11 month period 15 March
1976 to 6 January 1977. The work deals with a geometrical theory of
diffraction analysis of high frequency radiation from thin slots in
perfectly-conducting planar and circular cylindrical structures which

are partially covered with a reactive impedance surface to enhance

strong circularly polarized radiation in the vicinity of the horizon.
Numerical results and analytical expression have been presented for

the radiation patterns of both the transverse electric (TE) and trans~
verse magnetic (TM) cases. Results of the geometric theory of diffraction
(GTD) calculations are compared against results obtained by a combination
of the method of moments (MM) and the (GTD), abbreviated as (MM-GTD).
Although each is an approximate method the MM-GTD method is slightly
more accurate in predicting the patterns of electromagnetic radiation

for these types of antennas.

2. The present study is applicable to the problem of controlling the
pattern shape of electromagnetic radiation from flush mounted antennas
used in high speed aircraft, missiles or satellites.
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I.  INTRODUCTION

This report deals with a geometrical theory of diffraction (GTD) [1]
analysis of the high frequency (h.f.) radiation from slots in perfectly-
conducting, planar and circular cylindrical structures which are partly
covered with an impedance surface patch. The present study is applicable
to the problem of controlling the pattern shape of the electromagnetic
radiation from a flush mounted, airborne antenna for satellite communi-
cation purposes. In this application, a slot antenna is flush mounted in
the aircraft fuselage, and the radiation pattern in the roll plane
containing the slot is of interest. Consequently, the problem is
essentially two-dimensional (2-D) in nature, and the aircraft fuselage may
be modeled approximately by a circular cylinder in the roll plane. The
effects of the aircraft wings are ignored in this initial study; however,
their effects can be incorporated in the future work in a straightforward
manner as will be indicated later on. In particular, it is of prime
interest in the satellite communication type application for the airborne
antenna to have a gain approximately that of the pattern maximum near the
horizon or the shadow boundary associated with the antenna. Such a desired
high gain may be achieved by an impedance loading of the perfectly-
conducting surface around the slot.

The antenna configurations of interest which are analyzed in this
report are illustrated in Figures 1 and 2. The slot is present in the
perfectly-conducting surface and the perfectly-conducting surface is
coated with a sufficiently long impedance surface patch which also covers
the slot as shown in Figures 1 and 2. With a proper choice of impedance,
the slot may be allowed to radiate as an end-fire antenna near the horizon;
this effect may then be employed to increase the gain near the horizon.
By a proper choice of the impedance, Zg, it is implied that Zg is chosen
such that the slot can excite a bound surface wave mode on the planar
impedance surface of Figure 1; whereas, it can excite an Elliot type mode
[2] on the curved impedance surface of Figure 2. The Elliot mode propa-
gates along the curved impedance surface with negligible leakage, and it
corresponds in the limiting case of the infinite radius of curvature to
the bound surface wave mode on the planar impedance surface. These modes
on the impedance surface diffract from the ends of the impedance patch
(as a result of the discontinuity in surface impedance there), thereby
producing an end-fire effect. It is noted that the surface wave or
Elliot type modes discussed above are excited by an axial (or z-directed)
slot in the configurations of Figures 1 and 2, if the surface impedance
is inductive. Whereas, a circumferential (or t-directed) slot will excite
these modes only if the surface impedance is capacitive.

In the present analysis, the impedance surface patch is used to
approximately simulate the effects of a thin, uniform dielectric or
ferrite cover, or a properly designed corrugated surface of finite
extent on the perfectly-conducting planar or cylindrical antenna
structure. The slot in the perfectiy-conducting structure is covered
by the dielectric or ferrite material, and it is assumed that the
electric field in the slot aperture is known, so that one also knows
the equivalent magnetic current in the aperture. The radiation
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Figure 1. A thin, 2-D slot in an infinitely long, planar,
perfectly-conducting structure with a surface *
impedance patch of length L. The value of the
surface impedance is Zg.
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from a slot of finite width may be obtained by quantizing the

source distribution in the aperture, and by superposing the fields
radiated by each of the quantized sources. An equivalent quantized
source in this case is a z-directed magnetic line source for the axial
slot; whereas, it is a t-directed magnetic line dipole for the circum-
ferential slot. These equivalent quantized magnetic currents radiate in
the presence of the perfectly-conducting surface (which covers the
aperture as well), and the dielectric or ferrite material which covers
the perfectly-conducting surface. The strengths of the equivalent
sources are weighted according to the source distribution in the aperture.
In the present report, only the radiation from a magnetic line source and
a magnetic line dipole will be analyzed since the radiation from a slot
of finite width may be readily obtained from this analysis by super-
position. In the impedance surface approximation for the truncated
dielectric or ferrite cover on the perfectly-conducting surface, the
equivalent problem to be analyzed consists of an equivalent magnetic line
or line dipole source on the impedance surface patch which covers the
perfectly-conducting planar or cylindrical surface.

While the cylindrical antenna configuration of Figure 2 is important
in this study because it models an aircraft fuselage in the roll plane,
the planar configuration of Figure 1 is also analyzed in this report
because it is a more basic geometrical configuration involving a
perfectly-conducting structure with a surface impedance patch, and because
a comparison of the patterns for the configurations in Figures 1 and 2
allows one to ascertain the effects of surface curvature especially in
the re?ion of space in which the slot is directly visible (i.e., the 1lit
region).

A GTD analysis has been performed previously with success to
analyze the radiation from slots in truncated, planar dielectric covered
surfaces [3], hence it was decided to extend the GTD analysis of [3] to
treat the problems in Figures 1 and 2. In particular, the GTD solutions
to the problems in Figures 1 and 2 are "built up" from the asymptotic h.f,
solutions to several, appropriate canonical problems as in [3], however
the type of canonical problems analyzed and employed in this report are
quite different from the ones employed in [3]. The significant advantages
of the GTD method, which is an asymptotic h.f. method, are that once the
pertinent GTD launching, propagation and diffraction coefficients are
known from the solutions to canonical problems (or by some other means),
then the GTD may be used to calculate the fields radiated, scattered, or
diffracted from complex structures in a simple fashion by appropriately
expressing the fields in terms of the above mentioned coefficients
together with the spatial divergence factors for the rays associated with
these fields. Such a ray description results from the local nature of
propagation, scattering, and diffraction which is exhibited by asymptotic

h.f. field approximations. The spatial divergence factors for the rays
indicate the presence and the jocations of the caustics of the ray
system. Generally onc of the caustics of the diffracted ray occurs at

the point of diffraction on the surface. Away from the point of dif-
fraction, the diffracted ray tube spreads according to the laws of
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ordinary geometrical optics. The launching or diffraction coefficients
provide the starting amplitudes of the rays directly emanated from the
source, or the rays diffracted from certain points of diffraction on the
surface, respectively. Therefore, in addition to the usual rays of
geometrical optics corresponding to the incident and reflected rays which
propagate from the source to the observation point along direct and
reflected ray paths, respectively, the diffracted rays propagate from the
source to the observation point via points of diffraction on the surface
in accordance with the generalized Fermat's principle proposed in Keller's
GTD [1]. The diffracted rays are produced by the presence of discontin-
uities or variations in the geometrical and electrical properties of the
surface (e.g., a discontinuity in surface impedance). For a comprehensive
account of GTD which also includes some new and useful results for
engineering applications, one is referred to Kouyoumjian [4]. The ray
description for the fields not only provides a simple solution, but one
which is also highly efficient for numerical computations. Furthermore,
the ray contributions provide a direct physical insight into the various
scattering diffraction and radiation mechanisms which are present,

thereby also providing useful design information for controlling these
effects advantageously.

One notes however that the ray optical field description breaks
down at and in the neighborhood of caustics and shadow boundaries,
hence the ray field must either be modified or supplemented by a
separate solution so that it remains valid within these regions of space
which are commonly referred to as transition regions. The field analysis
in the transition region is complicated because the fields must change
rapidly but smoothly across these regions. Modifications or the intro-
duction of supplemental solutions to the ray field within the transition
regions are referred to as uniform representations if they not only
remain valid within these transition regions, but if they also reduce to
the proper ray fields outside the transition regions. There are no ray
caustics in the far zone of the sources in the antenna configurations of
Figures 1 and 2, respectively ; however, shadow boundaries are present for
the circular cylinder antenna configuration of Figure 2 due to the
finite radius of curvature of the cylinder in this case. Such shadow
boundaries are absent in the planar configuration of Figure 1. Hence, a
uniform asymptotic approximation is developed in the present analysis
for the cylindrical antenna configuration of Figure 2 to provide field
expressions which are valid within the transition regions, and which reduce
uniformly to the ray fields outside these regions.

The analytical details are presented in Section II. Some preliminary
numerical results for the radiation patterns are illustrated in Section
[Tl for both, axial and circumferential slots in the geometrical configur-
ations ot Figures 1 and 2, respectively. The solutions to the various
canonical problems from which the final GTD solution is constructed are
indicated in the Appendico. ., Some useful modifications, refinements,
and generalization: of this work which are worth pursuing are also
discussed in Section III.
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II. ANALYTICAL FORMULATION

The ray optical analysis based on the GTD for the antenna configur-
ations of Figures 1 and 2 will be indicated in this section. Specifically,
the manner in which the analysis of the composite problems in Figures 1
and 2 will be built up or constructed from the asymptotic solutions to
somewhat simpler canonical problems will be indicated. Basically, the
total radiated field is composed of the fields associated with rays which
propagate not only directly from the source to the observation point, but
also with rays which propagate via points on the surface at which
variations or discontinuities in the geometrical and electrical properties
can occur, Such points constitute points of diffraction on the surface.

The planar configuration of Figure 1 will be analyzed first in
Section A, and the analysis for the cylindrical configuration of Figure
2 will follow in Section B. Both, the axial and circumferential slot
cases will be considered in Sections A and B. It is noted that due to
the 2-D nature of the problem, an axial slot in the configurations of
Figures 1 and 2 radiates only a z component of the magnetic field which
will be denoted by Hy; whereas a circumferential slot in these configur-
ations radiates only a z component of the electric field which will be
denoted by Ez. The solution for the axial slot case may be referred to
as the TEz solution, and likewise the solution for the circumferential
slot case may be referred to as the TMz solution.

As mentioned previously in Section I, only the radiation from a
magnetic line source (for the TE, case) and the magnetic line dipole
source (for the TMz case) on an impedance surface patch which covers a
perfectly-conducting planar or circular cylindrical surface will be
analyzed in this report; these magnetic line currents constitute the
quantized, equivalent sources in the axial and circumferential slot
apertures. The radiation from a 2-D axial or circumferential slot of
finite width may be readily obtained from this analysis via superposition.
In the impedance surface approximation for the truncated dielectric or
ferrite cover on the perfectly-conducting surface, the equivalent
problems to be analyzed therefore consist of an equivalent magnetic line
or line dipole source on an impedance surface patch which covers the
perfectly-conducting planar and cylindrical surfaces, respectively.

An eJ@t time convention is assumed and suppressed in the following
analysis unless specified otherwise (as in Appendix II).

A. Analysis of the Planar Antenna Configuration

According to the GTD, one may simply describe the field radiated
by the planar antenna configuration of Figure 1 in terms of a Super-
position of the fields associated with the rays which are directly
radiated by the source at 0, and the rays which are diffracted from the
ends of the surface impedance patch at Q1 and Q2, respectively. The .
pertinent rays for this problem are illustrated in Figure 3 in which
u” represents the field of the ray directly radiated from a line source




TO P (FIELD POINT IN FAR ZONE
OF THE IMPEDANCE PATCH
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Z, Z,=0
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Figure 3. Rays associated with the radiation from a line source
on an infinite, planar perfectly-conducting surface
which is covered with an impedance surface patch.

at 0, whereas ud and u2 represent the fields diffracted from the ends

Q1 and Q2 of the surface impedance patch, respectively. The surface
impedance, Zs is chosen to support a bound surface wave type mode which
is ‘xcited by the line source at 0. Thus the surface impedance, Zg is
inductive for the magnetic line source case (corresponding to the axial
slot, or TE, case), whereas Zs is capacitive for the magnetic line
dipole source (corresponding to the circumferential slot, or TM; case).
The field of this bound surface wave mode is denoted by ul; this field
propagates from the source at 0 to the ends of the surface impedance
patch at ( and Q2, respectively as shown in Figure 3, Since there is a
discontinuity in surface impedance at Q and Qp, the field yi at Qy ,2 18
partly reflected, and partly diffracted from Q ,2- Thus, ua o is produced

via the diffraction of the surface wave field u1 Q] ) when it impinges
upon the surface impedance discontinuity at Q1,2 % course, multiple
reflections of the surface wave field can occur between the ends Q1 and Qg,
and the inclusion of these multiple reflection-diffraction effects is
discussed later in Section III. It is assumed in the present analysis

that the surface impedance patch is sufficiently large in extent so that
only the bound surface wave mode field u' (which is a non-radiating field)
constitutes the dominant contributor to the field on the impedance




surface far from the source, since the field u" (i.e., the radiated or
space wave field) becomes vanishingly small along the surface impedance
boundary when it is evaluated far from the source. This assumption may be
verified by solving the canonical problem of a line source on an infinite,
planar impedance curface as shown in Figure 4. The canonical problem

of Figure 4 is briefly analyzed in Appendix I, and the solution to_this

problem provides the necessary expressions for the fields u" and u' of
Figure 3.

- —

@ @®
LINE SOURCE AT O Z, = NON-ZERO
ON THE IMPEDANCE SURFACE |IMPEDANCE
SURFACE AT y=0, [x|<®

Figure 4. Geometry of the canonical problem of a line source on
an infinite, planar impedance surfacc.

In the radiation pattern analysis, the field point P is assumed
to be in the far zone of the surface impedance patch. The field u"(P),
which is the field u" evaluated at P is a cylindrical wave type field
which emanates from the line source at O when P is sufficiently far from
0; this field may be represented according to geometrical optics as

ur(P) % ur(P|) Dr e-Jk[PP'] (])
o +[PP']

where P' is some refercnce point* on the ray path from 0 to P, and k is
the free space wave number. The caustic distance o" of this ray is
simply the distance OP'. In order to relate the field u"(P) to the
source, one must take the 1imit of the RHS of Equation (1) as p"™0 (or

P' approaches the point 0). In the ray approximation, u"(P') is singular

*The quantity PPT in Equation (1) denotes the distance from P' to P.
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at the caustic, but the limit of Vo' u"(P') as o"+0 exists, and it is
proportional to the strength of the magnetic line source or the magnetic
line dipole source at 0 and the radiation coefficient R which is defined
below. Let M = uM &6(x)6(y) denote this magnetic line source, or the
magnetic line dipole source so that

Tim \Ip'" uW(P') a MR ) (2)
r
p 0

One notes that u=z for the axial slot or the magnetic line source case,
whereas u=x for the circumferential slot or the magnetic line dipole case.
The constant of proportionality in the above 1imit is defined as Cy, where
Co is some complex constant. The radiation coefficient R indicates the
manner in which the source M at O distributes the radiation field in space;
thus, R is identical to the pattern factor of the source. In general, R

is a function of the azimuthal angle ¢. One notes that PP'#p as p™0, so

(3)

The constant Cy and the radiation coefficient R(¢) are determined from
the solution to the canonical problem of Figure 4, as given in
Appendix 1.

- %% , for the magnetic line dipole, or TMZ case

= Ji%—, for the magnetic line source, or TE, case. (4)

The Y, in Equation (4) is the free space admittance. R(¢) will be dif-
ferent “or the magnetic line source, and the magnetic line dipole; the
explicit form of this coefficient will be indicated later.

The fields u?(P) and ug(P) at P which are diffracted from the ends
of the surface impedance patch at Qy and Qp, respectively may be
assumed to be produced by Tocalized equivalent magnetic line sources or
Tine dipoles at these ends. Thus, u{ »(P) may also be expressed in
terms of a cylindrical ray divergence’%actor via ray optics as

d

d d P12 -jkPy 2P
u (P) Ny (P' ) e e | (5)
1,2 1,2'P1,2) (g RS

where 92 is some reference point between Q7 and P; likewis Pé is some
reference point between Q2 and P. The caustic distances pa o for these
diffracted ray fields are simply given by oq 9 01,2 Pi 2.’ As before,

8




¥ s d d ]
L ];m P12 YUy 2(P")
+0
P1,2

is finite and proportional to the strength of the equivalent Tine source
at Q1 2. The strength of the equivalent line source would of course be
proportional to the strength of the surface wave field u! which strikes
the ends Q1 2 to produce the diffracted field u] 2(P) Hence

g | d d X et
1(11m 01’2 U-l’z(p ) = u (Q],Z) & D(¢~|,2)’

Py,270

where D(¢ is the diffraction coefficient at Q.2 which indicates the
manner 1n w%1ch the diffracted field is d1str1buted in space. The
functional form of D is the same at Q; and Q2, respectively, and the
diffraction coefficient at Q) depends on the angle ¢1; whereas, the dif-
fraction coefficient at Q2 depends on the angle ¢2. The angles ¢7 and ¢2
are indicated in Figure 3. Thus, Equation (5) becomes

: 1 I, 0=
U],z(P) ~vou (Q] ,2) D(¢]’2) —:/S:—-_ ] ¢2='n-¢ - (6)
1,2

It is noted that PiP*s] as p?»o, and PéP*SZ as pg»o, in Equation (5). In
the far zone, one may approximately replace

-Jjks -jke ull
e 1,2 w8 : eJk2C°5°l,2
/s Yo

using the origin as the phase reference. Thus,

sk
d i JkZC054y 2 ¢
u]’z(p) ~ou (Q],Z) D(@]’z) € —— (7)

The incident surface wave field uj(ﬂi d> launched by the source M at 0
may be represented as ’

: -je%
u1(01’2) = C, M L™ » (8)




where L% and 8 are the surface wave launching and propagation coef-

ficients, respectively; both of these quantities are found from the
solution to the canonical problem of Figure 4 as given in Appendix I.
The remaining quantity, D in Equation (7) must be found from the
solution to the canonical proglem of Figure 5 as given in Appendix II.

ul = INCIDENT SURFACE WAVE MODE FIELD
u'= REFLECTED SURFACE WAVE MODE FIELD
ud= DIFFRACTED FIELD

Figure 5. Geometry of the canonical problem of surface wave
diffraction by a discontinuity in surface imped-
ance associated with a two part, planar impedance
surface in which the surface impedance for x>0
and y=0 is zero corresponding to a perfectly-
conducting boundary.

As pointed out by Keller and Karal (Journal of Appl. Phys., Vol. 31,
No. 6, June 1960, pp. 1039-1046), and more recently by Felsen and
Choudhary (IEEE Trans Antennas and Propagation, Vol. AP-21, November
1973, pp. 827-842), the geometrical representation of evanescent or
surface waves is by complex rays; however, since the source and field
points lie on the lossless impedance surface in the calculation of
u‘(Q] 2) in this analysis, and since the field of the surface waves is
not included at P, the representation in Equation (8) is adequate.

One may now specialize the above set of resu]ts to the axial slot
(or TEz) and the circumferential slot (or TM;) cases, respectively. As
mentioned previously, the magnetic current Mzcorresponding to a
quantized equivalent source in the slot is given by

. { zZ M 6(x)é(y) for the magnetic line source corresponding
M= to the axial slot or TM; case. (9)
x M 6(x)6(y) for the magnetic line dipole corresponding

to the circumferential slot or TE, case.
10
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in which M is the amplitude of the source which is assumed known and
6(x)8(y) is the two-dimensional Dirac delta function. The corresponding
fields for the two slot types are

U = =y o+ u? + ug ; for ,and 0 < ¢ < m, (10)

Z z

The source M in Equation (9) for the TE, and TM; cases is explicitly
defined. The quantity R(¢) in u" for the TE, and TM; cases is given
separately in Equations (A-26) and (A-45), respectively of Appendix I.
The diffraction coefficient D(¢) appearing in u above is presented
separately for the TE; and TM; cases in Equation (A-74) and (A-97),
respectively of Appendix II. One recalls that u{ , also requires an
explicit knowledge of ul(Qy ) which in turn requires a knowledge of

LSW and B8 as mentioned in Eduation (8). These quantities are explicitly
given in Appendix I by Equations (A-27) and (A-19) for the TE; case, and
by Equations (A-46) and (A-40) for the TM, case.

B. Analysis of the Circular Cylinder Antenna Confiquration

There are some essential differences between the radiation mechanisms
present in the planar antenna configuration of Figure 1 which was
analyzed in part A, and the cylindrical antenna configuration of Figure 2
which is analyzed below. These differences will become evident in the
following discussion. As mentioned earlier, the magnetic current M
corresponding to a quantized equivalent source in the slot aperture is
given by

E, for the magnetic line source
x o or the TE_ case.
ﬁ:uMi&E:—a—me; u = z (]])

¢, for the magnetic line dipole
or the TMZ case.

The boundary SBQ' in Figure 6 constitutes the shadow boundary for the
source M at Q'. The field radiated by the source M at Q' may be
obtained via GTD in terms of a superposition of the fields of the rays
directly radiated by the source M, and the fields of the rays which are
diffracted from the ends of the surface impedance patch at Q) and Qzﬁ
respectively as shown in Figure 63, The field directly radiated by

is denoted by 0"; whereas ud and u represent the fields diffracted from
Q1 and Qp, along direct _ray paths to the observation point P, as in
Figure 6a. The fields U{ and UY may be assumed to be produced by
equivalent magnetic line sources or Tine dipoles at Q) and Qp, respectively.
Hence, the boundaries SBQ7 and SBQp illustrated in Figure 6 correspond
to the shadow boundaries of equivalent sources of the diffracted fields
at Q1 and Qp, respectively.
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P (IN DEEP LIT REGION OF Q')

Q'q=t,=ag,
dQ=t,=a¢,
QT =4,
Q%= 4,
e'p=s'

QP=Ss,

QP=S,
sz =sdz

T'P :sdl

SURFACE IMPEDANCE
Z #0 OVER THE
SECTION Q,0Q'Q,;
Z,=0 OVER THE
REMAINING PORTION

O'TzT' Qz OF THE
CIRCULAR CYLINDER

OF RADIUS =a

LINE SOURCE

(IN DEEP SHADOW
-REGION OF Q)

(b) (c)

Figure 6. Rays and shadow boundaries associated with the
cylindrical antenna configuration of Figure 2.
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As in the planar case, the type of impedance surface chosen is such
that it supports an Elliot type surface wave mode which propagates along
the impedance surface from the slot to the ends Q) and Q2 of the patch
with negligible leakage (provided thg cylinder is sufficiently large).
The E11iot mode field is denoted by g?, and it's propagation path is
illustrated in Figure 6. The field u' impinges upon the termination of
the surface impedance patch at Qj and Q2 to produce the diffracted
fields ﬁi and , respectively which traverse the direct ray paths
QP and Q2P to the observation point P. However, in addition to Ui
and uy, there exist an additional class of diffracted fields resulting
from the diffraction of creeping waves that are excited at Q1 and Q;
these creeping waves propagate over the perfectly-conducting portion
of the cylinder. Sufficiently far from Q1 and Q2 the creeping waves
are expressed in terms of a rapidly converging set of surface ray modes
whose amplitudes decay exponentially due to a continuous shedding of rays
from the surface ray mode fields (via surface diffraction) along the
forward tangents to their surface ray paths on the perfectly-conducting
part of the cylinder. These surface ray modes were introduced by
Keller [1] to analyze the diffraction by smooth, convex cylinders via
GTD. The surface ray modes are also commonly referred to as Watson
modes [5]. The fields of the surface ray modes are denoted by ufW and
UEW; whereas, the fie]dsdof the rays diffracted from these surface ray
modgs are denoted by ﬁ? and , respectively. The rays corresponding
to uf" and u$" travel 1n opposite directions along the perfectly-
conducting portion of Ehs cy]iQdSr as shown in Figure 6. The diffracted
rays corresponding to u? and u§ are also illustrated in Figure 6. In

rticular, one notes that the rays corresponding to the diffracted field
5? 2 exist on the 1it side of the shadgw boundary SBQy 2; whereas, the rays
corresponding to the diffracted field u?,z exist on the shadow side of

SBQq, 2.

The ray descriptions U? 2 and a?dg on either side of the shadow
boundary SBQy, 2 fail at and in the neighborhood of SBQ1,2. Therefore, a
uniform approximation for the field which remains valid within this
transition region adjacent to SBQy,2, and which reduces to U 2 and
03 2 outside the transition region in the 1it and shadow sides of
SBQ7,2, respectively is presented in terms of the Fock integrals [5].
One notes that in addition to the El1liot mode field U1 excited by M
on the curved impedance patch, there also exist a set of Watson type
modes which leak off energy via diffraction from the curved impedance
boundary as they propagate from the source M at Q' to the ends of the
impedance boundary at Q7 and Q2. The existence of these Watson type
modes is not indicated in Figure 6 because their diffraction effects
will be assumed to be negligible in comparison with those due to the
Elliot type mode. The Elliot mode propagates with very little leakage,
hence it may be assumed that this mode is the dominant contributor to
the field on the curved impedance surface which is incident at 0,2
While the assumption that the leakage from the Watson type modes being
small may be true only for a certain range of parameters (such as those
involving the value of the surface impedance, Zs; the length of the
curved impedance surface section; and the curvature of the cylinder),

13
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the present analysis is based on this assumption being true® There is
also a transition region adjacent to the shadow boundary SBQ' associated
with the source M at Q'. One notes that the ray field Ur far from Q'
vanishes along SBQ'; this may be verified via an asymptotic solution to
the canonical problem of Figure 7 as given in Appendix III. Thus, since

b §
LINE * ur
SOURCE \l

u'

SURFACE IMPEDANCE 2,#0

Figure 7. Geometry of the canonical problem of a line source
(or thin slot) on a circular cylinder which is
completely covered with an impedance surface.

the leakage or surface diffraction effects of the Watson type modes is
neglected, and U' is continuous everywhere (gven near the boundary SBQ'
where it vanishes) on the 1it side of SBQ' (u" ~ 0 on the dark or shadow
side of SBQ'), no uniform approximation for the fields is presented

within themtransition region adjacent to SBQ'. However, one would have

to modify u" if the leakage of the Watson modes from the impedance surface
is included. This modification would provide a uniform approximation with-
in the transition region adjacent to SBQ'; such a uniform approximation
involves a modified Fock integral. One notes that the inclusion of the
Watson modes also requires that their diffraction from the ends of the
impedance patch at Q1 and Q2 be included. Furthermore, a uniform ap-
proximation to the diffraction of these Watson modes from Qy 2 must then

be included within the transition regions adjacent to SBQj 2; otherwise,

a discontinuity in the field pattern would result across S Q1,2. The
inclusion of the effects of these Watson type modes on the curved impedance
section is proposed as part of the future work dealing with refinements

and extensions to the present work.

By dividirg the space surrounding the cylinder into six regions as
indicated in Figure 6, one notes that the total field u radiated by the
slot may be given within each of these regions I, II, ILI, IV, V, and VI,
respectively, in terms of the ray fields u', }» and a% » as follows.

2

*One might expect this assumption to be fairly accurate for sufficiently
large cylinders and for impedance patch lengths which are small in
comparison to the size of the cylinder.

14




ar oovdovd | vsd | nsd - -
Ut Uy tuy tuy oy , 1in region I
a o+ ﬁ? + 3Zd , in region II
d ~nsd g .
v up * U, , 1in region III
T &Sd & an , in region IV
1 2
an + ad , 1n region V
1 2
ar o+ Eﬁd + Ug , 1in region VI (12)
\

As noted previously, U= E, in the TM; problem; whereas,ﬁ = H, in the
TE, problem.

The fields ﬁ%w and &5” impinge upon the discontinuities in surface
impedance at Q2 and Qy, after being launched from Qj and Qp, respectively,
thereby giving rise to further reflections and diffractions. However,
these diffraction and reflections of uf¥ and US$¥ from Q, and Qq,
respectively are neglected in the present analysis since the fields
U 2 are exponentially decaying fields, and for sufficiently large

{ exéursions of the ray paths from Qq to Q2,, and vice versa, over the

' perfectly conducting portion, the }ields U?Wz are small enough to where
their diffraction effects at Q2,1 become eved smaller. The cylinder is
taken to be sufficiently large electrically in the present analysis,
so that the diffraction of U§¥, from Qu 1 is indeed negligible in com-
parison to the other diffraction effect$ being considered. Also, multiple
reflections of the Elliot mode field U can occur between Q and Q2 on
the impedance surface. The inclusion of these multiple reflection-
diffraction effects is discussed later in Section III.

The fields 4" and U' whose ray paths are indicated in Figure 6 may |
_ be found from the solution to the canonical problem of Figure 7 as given
i in Appendix III. Following the represent&tion for U' for the flat surface
i case of part A, one may likewise express U" ray-optically as

j ]
ur e 2 N s : ]
u (P) %Co M R(¢)‘ng-——— 3 P in 1it region of Q'. (13)

The distance s' = Q'P, and Cy has been defined earlier in Equation (4),.
The radiation coefficient R(¢) in Equation (13) is the same as that in
Equation (3) for the planar case; this result could have been directly
predicted via the geometrical optics ray approximation without having
to solve for U" as in Appendix I111. Choosing the origin as the phase
reference allows one to express U' as
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YT(P) ~ C_ M R(¢) elkacose & : (14)
0

o
where the angle ¢ is illustrated in Figure 6.

Next, the Elliot mode field U' on the curved impedance surface
which arrivgs at Q1 or Q2 from Q' may also be expressed in a fashion
similar to ul for the planar case (see Equation (8)) as

i vt 2
u1(Q],2) =C, ML e 5ty o= length @'Qy , . (15)

The quantities L®¥ and y are the ETliot mode launching and propagation
coefficients, respectively, which are found in Appendix III.

The field U' which is incident at Q) .2 produces diffracted rays
which emanate from Q7,2 as mentioned earlier. For a sufficiently large
cylinder, the nature of the diffraction of the Elliot mode from Q1,2
may be assumed to be locally the same as that in Figure 5 for the planar,
two-part impedance surface, except in the transition region adjacent
to the shadow boundary SBQj 2 and on the shadow side of SB 1,c below the
transition region (wherein the surface diffracted field ﬁﬁ 2 is the only
ray field present). However, even within the transitinn région adjacent
to SBQy,2 and on the shadow side of this transition region, one may
indireci]y employ the surface wave diffraction coefficient for the planar
case of Figure 5 to obggig an equivalent magnetic current source at Q,2
which in turn produces uﬁ 2 and the transition region field. The
equivalent current is a mdgnetic line source for the TE; case; whereas,
it is a magnetic line dipole for the TM; case. This "equivalent" source
is inhomogeneous since it is a function of 67 or 62, i.e., it depends on
the aspect, ¢, and it is regarded as the source which produces the
diffracted fields. Let the equivalent magnetic current at Q1,2 be
designated as M®9, where

$(0-a)6(0-9)

- eq >
5 Uy M1 (61) s ; at Q1
med - G (16)
§(p-a)8(o+¢
AT 0 :
Uy M2 (62) - ; at Q2
and
X z, for TE, case 5 z, for TE, case
U-I = H uz = ’ (]7a'b)

%], for T, case %2, for TM, case
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in which 11 2 is the unit vector at Qj p as shown in Figure 6. The

strength M?q2(61 2) of the equivalent source M9 is evaluated in
Appendix IV’which deals with the solution to the canonical problem
of Figure 8, Since the details are presented in Appendix IV, only the

LINE SOURCE
Z,v0 P

TO P ON
LIT SIDE OF 8SBQ,

TO P ON
SHADOW SIDE OF 8BQ,

Figure 8. Geometry of the canonical problem of the diffraction of
an E1liot mode by a discontinuity in surface impedance

on a circular cylinder.

final rasults for the diffracted ray fields u? 2 and BSdZ which are
produced by at Q1,2 are indicated below. One reca*?s that Uy o exists
on the 1it side of SBQy p; whereas,lj , exists on the shadow side’of SBGy p.

1
The ray field U? 2 spreadsdcy1ind£aca1%y outward from Q1 2. For the sake
of brevity, the forms of Uj and J3° will be indicated befow; however U7 and

&3“ have exactly similar forms (and may be obtained by replacing the
subscript 1 by 2).

-jks]

~d eq eq e : . : ?
ul(P) ~ Co M1 (6])2 (6]) - ; P in the 1it side of SBQ]
1

(18)
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The distances sy and sp correspond to Q1P and QpP, respectively, as
in Figure 6, and the angles 67 and 62 are also shown in Figure G. The
quantity Red(61) is the radiation coefficient of the source

e 6(p-a)5(¢-¢0)
1 p

at Qy, and it is specified in Appendix IV. However, since u?(P) is a
diffracted ray field, it is more appropriate to represent it in terms
of a diffraction coefficient rather than a radiation coefficient. In
fact, it is shown in Appendix IV that

eq eq _ad
Co My R8sy 5) = W(Q) H)0(8) 5) (19)

where D is same as the diffraction coefficient in Equation (7). Thus,

_ -jks1
U?(P) ~ ¥ (Q)0(s,) & ; P in the 19t side of SBQ
/s"]" (and 0 < &, < m) (20)

as in Equation (6) for the planar case. In the far zone, one may write

: jk (¢- -jk
a(]i(P) R 31(01)0(6]) eJ acos (¢-¢) %;?o ' i

One notes that &? ~v 0 for 61 > m; this is consistent with the assump-
tion that the curved surface diffraction effects of the Watson type modes
{excited by MEA) on the curved impedance patch are negligible.

The surface diffracted ray field ¥j9, excited by M§92(87 2=0) over
the perfectly-conducting surface is gived by Pathak and Rouyolmjian [6]
as

- -jks
N -[a_+jk]% i
sd " eq p 1 e .
M D (T,) =——
ﬁ] Co My (0) pZ] Lp(Q]) e p( ]) ;;
when P is on the shadow side of SBQ]. (22)

Only U39 is indicated above, and 03 is similar to U39, The distance
1 2 = arc length Q1 »Ty ». The distance Sy p = T P where Ty o is the
52$nt of diffraction or shedding of the surface diffracted ray field

1,2 and Q7,2 is the Taunching point of this surface diffracted ray field
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as indicated in Figure 6. Lp and ap are the launching, diffractionr
and attenuation coeff1c1ents of %he pth surface ray (or Watson) mode;
these are discussed in [6] and are also introduced in Appendix IV. In
numerical calculations, the inclusion of only the first couple of modes
(p=1,2) is sufficient to obtain good accuracy provided P is outside the
transition region adjacent to SBQy.

One may now specialize the above results to the axial slot (or
TEz) and the circumferential slot (or TMz) cases, respectively. The
magnetic current M at Q' corresponding to the two types of slots is
defined in Equation (11) in which M is the amplitude of the source which
is assumed known. The total field, U radiated by the source M is obtained
from Equation (12) after noting that

\

y [Ezl jTMzL
U= 7 ' , for the cases ; and 0 <¢ < 2n . (23)
H
z

| \TE,)

The total field U in Equation (12) is composed of U", U? , and d] o

The diffracted fields &? 5 and U?dz in turn are expressed in terms

of 61(01 ). Finally, one recalls that the expressions for b, U] 2
Lew, AL H?“Z (or Me b
Req D, Lp and ap. In particular, R(¢) in ar s given by Equations
(A- 125‘ and R ]40\ 1n Append1x IIT for the TE; and TM; cases, respec-
tively. The L® and y are given in Appendix III by Equations (A-123)
and (A-124) respectively for the TEz case; whereas, they are given
by Equations (A-138) and (A-139) res ect1ve1y for the TMz case. The
strength of the equivalent current M% (6] 2) is given by Equations
(A-145) and (A-152) for the TE, and Tﬂ cases, respectively in
Appendix IV. Also given in Appendix IV are the expressions for r%Y,
Lps Dp and ay for the TE, and TMz cases, respectively; spec1f1ca11y,
one is referred to Equations (A-143), (A-144b), (A-149), (A-151),
-147), and (A-155) for these expressions. A]so, the D appearing in
and in M‘q (of Equations (A-145) and (A-152)) is given by Equations
A ;4 and (A- 97) for the TEz and TM; cases, respective]y in Appendix I..

N?dz, and o1 (Q] 2) contain quantities R(¢),

Finaily, one notes that the ray fields u] ,2 and u1 2 on the lit
and shadow sides of the shadow boundary SBQy 2 are not valid within
the transition reg1on adJacent to SBQy,2. The angular extent of the
transition reg1on is O[(ka)-1 /3] radians. Following a generalization
of the analysis in [6] which is based on the results of Ivanov[7],
one obtains the necessar dmod1f1cgt1ons which constitute uniform approx-
imations for the fields 5 and u3- in the trans131on region by firstly
replacing the expression 1n Lan%1on (22) for U1 with




g9(&q) s -jks '
wsd 1 Jkl] e 1 ) TEz -
(P) ~ C M.I g e —- s For case, (24)
.g(gl) /s] LTMZ
—J m
and by replacing the expression in Equations (18) or (20) for ﬁ? with
3 ]
M
g(€,) e 3 -jks
up(P) ~ C M]q 3 £ s for case. (25)
y e 3 o lTM
(&) -i— =
e 3
F—=

Equation (24) for ﬁ] is to be employed for P in thg shadow zone of
the transition region; whereas, Equation (25 for U is to be employed
for P in the 1it zone of the transition region. The Fock functions
g(- %,]aqd d(+) are defined in [6]; they are also defined and tabulated
in E5].

mL
1 2~ : S :
g == ; & =-mcos (5-- 6]) p (6]< %-1n transition region)

(26a,b)

and

1/3
n= () . (27)

Although the above field expressions in Equations (24) and (25) are
associated with the transition region adjacent to SBQj, similar express-
ions apply to the transition region adJacent to SBQp. It was mentioned
previously that M g ( ]) is inhomogeneous, i.e., it depends on the
aspect ¢ via the aﬁg]e 81,2 (see Equat1on (19) for example); however,

it is important to note that while M] o in Equations (18), (19), and
(25) depend on 61 2, the M in Equations (22) and (24) is evaluated

at 6] 2 =0 as in dicated in 5eta1] in Appendix IV,




ITT. NUMERICAL RESULTS AND DISCUSSION

Numerical results for the radiation patterns of the antenna con-
figurations of Figures 1 and 2 are presented in this section; the
patterns have been calculated via the GTD results which are developed
for these configurations in Section II. The radiation patterns for the
axial slot or TE, case are presented for the planar and cylindrical con-
figurations in Figures 9-15; whereas, those for the circumferential slot
or TMz case are presented in Figures 16-20. These patterns are normalized
to 0 dB at their peak value.

The results of the GTD calculations are compared against
corresponding results which are obtained via an independent calculation
based on a combination of the method of moments (MM) and the GTD; the
latter method abbreviated as MM-GTD as applied to the antenna configurations
of Figures 1 and 2 is discussed in a separate report [8]. The MM-GTD is
also an approximate method; however, it is expected to be slightly more
accurate than the initial GTD analysis presented in this report. It is
noted that in general, the results obtained by the present GTD analysis
agree well with those obtained by the MM-GTD analysis of [8].

In general, one notes that increasing the size of the impedance patch
increases the number of pattern ripples in the 1it region (i.e., in
the region of space where the slot is directly visible); whereas, increasing
the size of the cylinder tends to decrease the level of the radiation
pattern in the deep shadow region of the slot. Over the range of imped-
ance values considered in the present calculations, one notes that in-
creasing the value of the surface impedance for the TE, case in general
increases the size of the pattern ripple in the lit region; whereas, the
reverse appears to be true for the TMz case.

The high lobe structure caused by the use of the surface impedance
patch is a direct consequence of a poor impedance match at the edges of
the patch. This is harmful for the TE; case but it is a disaster for
the TMz excitation. Tapering for impedance matching purpose has been
used in the other report [8] but it would not be of any real import
as it was used in so far as the TMz geometry is concerned since the
presence of the zero surface impedance would always cause a Strong
reflection. Consideration should be given to terminating the structure
in an impedance surface whose value is chosen so that no surface wave
exists. This should force the energy off the surface and in the desired
direction with minimum back reflection as is the case in corrugated
horn structures.

The GTD method presented in this report yields a simple and
efficient procedure to analyze the radiation patterns of the antenna
configurations in Figures 1 and 2; furthermore, due to the local nature
of the GTD, it provides a physical insight into the radiation mech-
anisms involved. The numerical results indicate that this method
indeed works well. However, some refinements and modifications of
the present analysis are required to make the present GTD analysis
useful and more accurate under general conditions. For example, it
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would be worth investigating the following topics in this connection. It
is of interest to investigate whether a more accurate representation for
the fields on the impedance surface region would improve the GTD analysis
for smaller size impedance patches, and even smaller size cylinders. In
the planar case, one notes that the possibility of multiple surface wave
reflection - diffraction exists, and this interaction could be quite
important if the surface wave reflection coefficient at the ends of
impedance patch is large. When interactions are important, it is im-
portant to have an accurate representation for the surface field which
impinges on the ends of the impedance patch; otherwise, the errors

could accumulate with the inclusion of each higher order multiple
interaction. Furthermore, for the size of the impedance patches considered
in the present calculations may not be long enough to assume that the

space wave component of the field of a slot in an impedance surface is
vanishingly small at the ends of the patch, hence some errors could

result from not employing a more accurate representation for the field on
the impedance surface in this case. One notes that only the surface wave
mode or the Elliot type mode field is assumed to exist over the planar or
curved impedance sections, respectively, in this study however this may be
true only for large size impedance sections. Intimately tied in with this
improved surface field calculation is the inclusion of the effects of the
Watson type modes on the curved impedance section to obtain a better surface
field representation in this case; however, since a calculation of the
propagation constants of these Watson type modes could present some
numerical problems for certain values of the surface impedance, an alterna-
tive surface field expression involving a modified Fock integral for the
curved impedance surface should be investigated. Of course, one would

have to look at ways to approximate this Fock type integral for the field
on the curved impedance surface for ease of numerical computations.
Furthermore, the inclusion of not only the E1liot mode, but also the
Watson modes on the curved impedance patch leads to a more complicated |
analysis for the diffraction of the Watson modes from the ends of the ;
impedance patch; in particular the analysis of this problem is more
complicated within the transition regions adjacent to shadow boundaries
SBQ1 and SBQ2 (see Figure 6), than that presented here for only the

E1liot mode case. The diffraction effects of the Watson type modes

are assumed to be negligible in the present analysis; the conditions under
which this assumption is true needs to be more carefully investigated.

It would be interesting to study the transition region problem
associated with the diffraction of the Watson type modes over a curved
impedance patch, as it is the dominant effect within this transition
region for curved impedance sections which do not support an Elliot
type mode (e.g., a capacitive reactance surface in the axial slot or
TE; case). Some of these problems will be investigated in the future
phases of this study.

These proposed modifications are expected to further improve the
accuracy of the GTD calculations presented in this section, in addition
to making the GTD method work under somewhat more general conditions
which may be encountered in practical antenna problems of the type shown
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in Figures 1 and 2. While the use of the MM-GTD method for analyzing these
problems [8] is far more efficient than the conventional MM techniques,

it is less efficient than the analysis based on just the GTD alone. At
the present, the MM-GTD method is applicable under more general situ-
ations than those presently handled by the GTD, e.g., it is applicable

to variable curvature cylinders and variable surface impedance cases;
furthermore it is applicable to the cases in which the surface impedance
does not support surface wave, or Elliot type modes. Some refinements are
also required in the MM-GTD methods as pointed out in [8]; these refine-
ments will also be studied in addition to the continuing GTD study of

the antenna problems of Figures 1 and 2. In conclusion, the GTD method
does show promise of being a useful method in analyzing the antenna
problems of Figures 1 and 2.
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Figure 13. Radiation pattern of a magnetic line source on a
perfectly-conducting circular cylinder which is
covered with an impedance surface patch.
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Figure 14. Radiation pattern of a magnetic line source on a
perfectly-conducting circular cylinder which is
covered with an impedance surface patch.
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APPENDIX I

AN ANALYSIS OF THE CANONICAL PROBLEM OF THE RADIATION FROM
A LINE SOURCE ON AN INFINITE PLANAR IMPEDANCE SURFACE

The geometrical configuration of the problem is illustrated in
Figure 4. A magnetic line source at 0 excites this configuration of
interest. This line source is designated by M, and it represents
a z-directed quantized, equivalent magnetic line source for the axial
slot (or the TE;) case; whereas, it represents an x-directed quantized,
equivalent magnetic Tine dipole source for the circumferential slot
(or ™M,) case. The TE; case is treated first; it is followed by a
similar analysis for the TM; case.

TEZ or the axial slot case

The magnetic line source M is specifically given by
M=2zMes(x)s(y) (A-1)

where the strength M is assumed known. The magnetic field radiated by
this source in the presence of the infinite planar impedance surface

is entirely z-directed (hence the fields are TEz type). Let this
magnetic field be denoted by hz. h; satisfies the reduced, inhomogeneous
wave equation, and the following boundary conditions.

(vi + k2) hZ = jkY0 M 8(x)8(y=h) 5 h»0 and y>0; [x|<e=, (A-2)
ah, Z,
s = Jk 7 h, , aty=0; |x|<= and Z¢ is the

y 0 surface impedance value. (A-3)

One notes that Yo = free space admittance and Zg = Yo']. V% is the two
dimensional Laplacian operator. Also, h; satisfies the radiation
condition as p*=., The solution to a similar problem is discussed
elsewhere [9,10]; however, a method of solution based on Green's functions
is presented here for the sake of completeness. Only the significant
steps in the analysis will be indicated for the sake of brevity. Let gy
denote a Green's function which satisfies the following equations:

(92 + k%)g (5"15) = - 6(x"-x)s(y'=y)s (¥,y')20, |x,x'}<e, (A-4)
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ﬁhereAV{z is the 2-D Laplacian in the primed coordinate system (x',y").

o = xx + yy; whereas p' = x'x + y'y.
3g A
3y$-= jk 73 g, at y'=0, [x'[<= . (A-5)
0

Also, gm satisfies the radiation condition. Utilizing the two-dimensional
Green's theorem and the reciprocity condition gm(p'lp) = gp(ele'), one
obtains

h_(x,y) = - jkY M g(x,y|0,h); h~0. (A-6)

Using the procedure for constructing higher dimensional Green's function
as in [10], one obtains

oy = - 77 P amxx) g Iy (A-7a)

c
X

where the one dimensional Green's functions gmy and gp, satisfy the
following differential equations and boundary conditions:

. 2
(-:—XT + A))gmx = 5()(")('); (—::—y-z- + Ay)gmy = - G(y_yl) (A“7b',A-7C)

gmx.an? gmy sa?isfy the : . Zs _

radiation condition at p=e=; 55 Yy - jk Z; Sy at y=0. (A-7d;A-Te)
In addition

Ao K= kS, (A-T7F)

The contour cy encloses only the singularities of gpy in the complex Ay
plane. gp. and Iy are found to be

V% [x=x"| =37x, (y=h) -jfky(y+h)
X e + R e
P T ORI T = h
e 2§VX, b Iy 25/h
i y (A-7g;A-7h)
38
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in which y > h = 0. The contour ¢y runs in the counter-clockwise sense
around the branch cuE singularity of gpyx along Rery > 0. Introducing

the transformation kX = Ax’ one obtains

; -jVX (y- -jVx
e A, (y-h) o8, Lyh) r
1 e ® Rhe kalxl
gm(xsy‘o’h) = mj' . dkx Z/X__ e
G y
(A-8)

in which x'=0, y'=h, and y>h+0. Also,

— ‘22
= kST K-k, - k 2,/2,

h = .
A+ k2T, *kz-ki t R AIT,

The contour of integration in Equation (A-8) is illustrated in Figure
A-1. The branch cuts in Figure A-1 are chosen such that ImvaA,<0. It
is convenient for subsequent evaluation of Equation (A-8) to introduce
further transformations

R (A-9)

ImKy

CONTOUR OF
/ INTEGRATION
+ A S

Figure A-1. Contour of integration in the complex kx plane.

X=pcCos¢ 3 y=psing , (A-10)
and

k, = k cos¢ ; VA = k2-k2 =+ k sing = k (A-11)

X Ly X B

33




The Green's function qy of Equation (A-8) is now expressed in the
complex & plane as

! =ik cos (¢-¢) -jko,cos(¢-€)|  (A-12)
gn(xsylo,h) = - m’[de e *R, (€)e
C

where

y +h=p,sing ; and the corresponding |x| = Py cOsé. (A-13a;A-13b)

2 2
One notes that Py > P as h - 0. Also,
2
‘ sing - Zs/Zo
&) = sRevr, (A-14)

The contour of integration c is indicated in Figure A-2. The integral
in Equation (A-12) may be evaluated for large key via the method of

2
steepest descent. Thus, the contour c¢ is deformed into the Steepest
descent path SDP through the saddle point.

Im§

v <% Re&
'3 —> Ky =+
P SURFACE WAVE POLES d P x*+h
ep _’Kl L B
\ 2
SOP, ORIGINAL CONTOUR C

-

(MAPPED FROM K, TO £ PLANE)

Figure A-2. Contour of integration in the & plane.
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£ =& = ¢ (at the saddle point); 0<g<w/2

S
if O<¢<w/2, (A-15)

The case 0<¢<m/2 is treated here. (A separate analysis for w<¢<w/2 is
not required since the results for this case may be obtained from those
for 0<¢<n/2 by invoking symmetry.) In deforming the contour ¢ into SDP,
the poles of R,(&) may be crossed, hence, their residue contribution must
be taken into account. The poles of Rh(£) occur at

sin & = = ZS/Zo ; such poles certainly exist if Zs is chosen
P to be jX_ where X >0 (i.e., Zg is an
inductive reactance). (A-16)
PR - (N 3 e

EP] = sin” (-j X /Z)) at the pole &=&,; for x>0 (A-17a)

and
o m

EPZ = +sin ' (j XL/Zo) at the pole £=Ep, for x<0. (A-17b)
Let

k cos Ep1 =8 3 k cos pp = - B, (A-18a;A-18b)
where

S & 2 : L )

g = k\1 + (XL/ZO) , With ZS = JXL(XL>0). (A-19)

Finally, a saddle point evaluation of Equation (A-12) yields the following
for pole not close to the saddle point.

—— : -jke -ay-jB|x|
S Y 2 sing e . &
e v =J — - =g U(é _-¢)
m \8rk Sing + ZS/Zo & B cl
for 0<¢<n/2 and h=0. (A-20)
o = 82 - k%, (p>k), and B is defined in Equation (A-19). (A-21)

41




Also,U in Equation (A-20) denotes the Heaviside step function which is
unity for ¢<¢.1; whereas it is zero for ¢>¢cy. The angle ¢¢y is
illustrated in Figure A-2. The first term on the RHS of Equation (A-20)
is the so-called space wave contribution which vanishes along the
impedance boundary (at ¢=0, w); whereas, the second term is the surface
wave mode field which exists when Zg = j X_(X_>0). One may now find h;
in terms of Equation (A-6) and (A-20) to be

hz(x,y) vt o] (A-22)

where
” M R(e) ki (A-23)
u =c¢ SR 5
9 Yo

and

e i e (8-20)

y=0 °

It is easily verified that if

= jk »
s {%; Yo Sl

€

then

. ol SN0 . & ST : A=
LORE s et i S
o and a/k = X /2, (A-26)

and

LY = - /Brik %2- (A-27)

where a and 8 are given in terms of the inductive reactance Zg = j X
(X,>0) in Equation (A-19) and Equation (A=21).

42

LT AR e




TMZ or the circumferential slot case

The magnetic line source M at 0 in this case is a magnetic line
dipole given by

M= xMs(x)ély) , (A-28)

where the amplitude M is a known quantity. The electric field radiated
by this source is entirely z-directed (hence, the fields are TM; type).
Let this electric field be denoted by e;. Then

(72 + K5)F = = M 6(x)6(y=h) ; y20; |x|<= and IO (A-29)
where
Gy el T e s -
6, 7= W g, 2 - x(xf) (A-30)
and

xf is the electric vector potential.

The impedance boundary condition ¥z

Z = § x Is n at y=0 where htan
is the tangential magnetic field at y=0 cor 3

responding to ez implies that
2 Z
3aTf _ af -
- at y=0, |x|<= . (A-21)

Let ge be a Green's function which satisfies

|2 SSTE bt 1
(v, + kz)ge(o'lo) = - 6(x'-x)6(y'=y) 5 y>20;5[x|<=
y'20;[x" < (A-32)
%
279, Z, 3g
—%= ik -23 a—-?— at y'=0; |[x"|s» . (A-33)
3y' g W
. P 99, I,
The above Equation (A-33) could be simplified to oy e Jk'z— g at y'=0
39
by integrating with respect to y' and requiring that g and sat1sfy

the radiation condition. One may show that
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f=Mg.(ole') = Mg (x,ylo,h), 0. (A-34)

In obtaining Equation (A-34), use is made of the fact that ez, and f satisfy
the radiation condition; also, ge is chosen to satisfy the radiation
condition. Following the procedure outlined for the construction of

gy in the TE, case, one obtains

o+je

) -3k, Ix| e-JY(Y-h)+RSe-JY(y+h)
go(xsylo,h) = ‘[- dk, e wATH 5 y>h
-®-je / h»0,
(A-35)
where
-k Z_/1
Z2 .2 e & 0’ s
y = \|K5-KE = AT R = = v - (A-36a;A-36b)
X y s Yk L/Lg

The contour of integration in Equation (A-35) is the same as in Figure
A-1. Transforming the above integral into the contour integral over c

in the complex &-plane of Figure A-2 via Equations (A-10) and (A-11), one
obtains

3 M | -keqcos(¢-¢)
ez(x,y) = - M 3§-ge(x,y|o,h) e~ dg ksing|e +
& e

-jke ,cos (¢-¢)

L

e
(A-37)
where Py p are defined in Equations (A-13a3;A-13b), and
sing - ZO/Zs
DR s o sl i
oS
One notes that Rg(&) can certainly have a pole when Zg = - j X¢ (X¢>0);

i.e., when Zg is a capacitive reactance. Then, evaluating Equation (A-57)
by the saddle point method while taken into consideration the residue

at the pole of Rg(&) when deforming ¢ into SDP yields the following

result for pole not close to the saddle point, and for y»0 (i.e., 01,2*0)
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. -jkp
] 2ja/k . ¥ e J
e, (x,y) ~ - jkM E%ﬁé?ja7r sing (“JJ@%F‘) = -
a? -ay-jB|x|
- JkM == e U(o ,-¢); 0<ecr/2. (A-39)

The results for nip:p/Z are directly obtained from the results for
O<¢<m/2 above by invoking symmetry. One notes that o and 8 in Equation
(A-39) are defined as

2 2 2 : i j
B" =a” + k" (ek)i o= KL /X, = -0k Z/7, (with Z.=-3X )

(A-40a;A-40b)

in which Zg = - jXc(Xc>0) implies capacitive reactance as indicated earlier.
One may rewrite Equation (A-39) as

ik 1

e, (P) vu' +u (A-41)
where
r e'jkp
u =c_MR(¢) = space wave (A-42)
" o
and
uil ot ) e'jslxl = surface wave mode field. (A-43)
ly=0
If ¢y 15 defined as
p—
" k
et J%? ' gl
then
i i ] .
R(¢) = (?7§1n¢)( o/%s)__ (2 sing)(jo/k) (A-45)
sing + 26/2g sing + Ja/k
and
s 4
L% = /8rjk %~. (A-46)

in which a and g are as defined in Equations (A-40a;A-40b), with

ZS = - JXC (Xc>0).




APPENDIX II

AN ANALYSIS OF THE CANONICAL PROBLEM OF SURFACE WAVE
DIFFRACTION BY A PLANAR, TWO PART IMPEDANCE SURFACE

The geometrical configuration of this canonical problem is il-
lustrated in Figure 5. The incident field, u! is a bound surface wave
mode which propagates along the surface impedance boundary (y=0, x<0);
and, it produces the reflected surface wave, and diffracted fields
u™SW and u9, respectively upon striking the discontinuity in surface
impedance at (x=0; y=0). One requires that the surface impedance be
purely inductive in the TE, case; whereas, it be purely capacitive in
the TMz case (to support the surface wave mode). In the TE; case, the
magnetic field is entirely z-directed; whereas, in the TM; case, the
electric field is entirely z-directed. Let

n HrSw ud TE
i £ rsw 4 d z a
TEE | y U = 2 u = ; for case,
y rsw d
EZJ Ez EZ TMZ

(A-47a;A-47b;A-47¢)

where E; and H, refer to the z2-directed electric and magnetic field
intensities in the TM; and TE, cases, respectively; also, the superscripts
i, rsw and d in (A—47a;A-47b;£-47c) stand for incident, reflected_and

.i

E
diffracted wave components, respectively. The incident field 2} consti-
H
Ed grsw -
tutes a known excitation, and the fields g and isw can be found via
H H
z 2

the Wiener-Hopf technique for solving the two part boundary value problem
of Figure 5. The TE; solution will be briefly outlined first; and a
similar outline will follow for the TM; case.

TE_ case
-

The excitation H; has the form

Hy = e 8% | [xce (A-48)

in which it is assumed that H; exists even for x>0,
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z
22:) : of = g2 _ 2, (A-49a;A-49b)
0

¥

as in tquations (A-19) and (A-21) for the TE, case with Zs = jXL(X>0)
; corrgsponding to inductive reactance. In the following analysis an
f e” '@l time convention will be employed for the sake of convenience in
‘ using the Wiener Hopf notation; howev%r, a complex conjugate of the
L final results will yield back the eJ“! time convention. The quantity
é i = /-1 instead of j = V-1 will be employed to distinguish between the
two time conventions. Let Hg denote the scattered field, then the total
field, H, = H; + Hg. The total field H, satisfies

(V3 + k%) H = 05 fory > 0, |x| <=, (A-50)
3H, z
TGk zi Hy 5 for y = 0, and x < 0. (A-51)
0
aHi Z
Equation (A-51) implies that === - ik ==HS for y = 0, x < 0, and
oy Zo Z
oH
3;5 =0 : for y = 0, and x > 0, (A-52)

Equation (A-52) also implies that

M ok .
B Tt for y = 0, x > 0, (A-£3)

Hi satisfies the radiation condition for e” 1%t time dependence.

One may next define the following Fourier transforms.

©

s _ 1 J[ s _isx hg Ry
™ = e H e dx = h] + h (A-54a)
/) teig
w ' 0 .
i el “[' L gk R N -f- HD e'S¥ dx  (A-54b3A-54c)
von V2n
O - 00
ik e . -ay
hy = -72;1’ Hy e dx = & | via (A-88). (A-55)
vom . '.W(S*n)
0
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Hi and Hi individually satisfy the wave equation in Equation (A-50).
Fourier transforming Equation (A-50) for Hg instead of H,, one obtaines

; A s
(.Lz + x> 120 k= s? o Wi (A-56)

dy

in which Im YA>0. The solution to Equation (A-56) in accordance with
Equation (A-53) is

RS = c(s) ei/x J y 2 0, (A-57)

The inverse Fourier transform of h° leads to Hi. Thus,

H

N WD

Sl

[ﬁs B e (A-58)
2m 4

Incorporating Equations (A-48) and (A-58) in H, = H; + H; which appears
in the boundary conditions (A-51) and (A-52) yields

fL‘](s)¢(s)e‘isxds =0 , x<0 , (A-59)
jr ¢(s)e'isxds = - /21 a eiBX S RO (A-60)
where
o(s) = VA c(s) (A-61)
and
22
T TR k_-s (A-62)
Va - ia Fege o
\k7=s" - ia

The above set of dual integral equations for ¢(s) in Equation (A-59)
and Equation (A-60) may be solved via the method of factorization [12].
Without going through the details, one obtains




c(s) = /ﬁ_ - (A-63)
€% iy gup) sz-sz(s+a)
in which
Les) = L.(s) L _(s) (A-64)

defines the Wiener Hopf factors L,(s) and L_(s) for the L(s) of Equation
(A-62). Ly(s) is analytic for Im s>0 and L_(s) is analytic for Im s<0.

Incorporating Equation (A-63) in Equation (A-57) and employing Equation

(A-58) yields

(2 2 .
Wki=s™ y g-isx 4o (A-65)

HS a f L-(S) 1
z 7 L (-8) ¢
y “o T (s+8) sz-sz

The residue of the pole at s=g in the integrand of Equation (A-65)
furnishes the reflected surface wave for x<0, whereas the pole at s=-8
furnishes the negative of the incident field for x>0 (see Equation (A-43)
where it was assumed that H] exists for |x|<=), and therefore cancels

the incident field for x>0.” The reflected surface wave field is

HISW  _ pa o-@Y-iBX : %<0 (A-56)
z H
where
n =) tifs) = e (A=67)
R* = 3 R 2 Tim (s=p) L{s) === A-67
W el el U s :

Clearly, R; is the reflection coefficient at (x=0, y=0) associated with
the reflected surface wave.

The diffracted field, Hd may be found from an asymptotic evaluation
of the integral in Equation %A-65) via the method of steepest descent.
To this end, one introduces the transformations s=kcosw, ds=-ksinwdw,

VkZ-s=ksimw, x=pC0s¢ and y=psiné. Thus,

L (kcosw) ;
s _ a - ~ikpcos (w+¢) i
U ,[- L_(kcoswp)(kcosw+8) " M R Lz

C
w
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!

The contour ¢, in Equation (A-68) is indicated in Figure A-3. The
contour ¢, may be deformed into the steepest descent path (one notes

that the pole at s=+8 which may be crossed in the path deformation yields
HYSW of Equation (A-66) and hence this pole crossing will be ignored
since it's contribution has already been evaluated in Equation (A-66)).
Without any details for brevity, the resulting saddle point approximation
along the steepest descent path yields

. '"'
i a o law e‘(k"‘ 7) L(-kcos¢) (A-69)
z 2n \kp L+(—kcos¢71+(Rcoswp)(B-kcos¢)
The quantity wp in Equations (A-68) and (A-69) is related to 8 via
8 = kcoswp. (A-70)
One may rewrite Equation (A-69) as
+ikp
HY ~ Dx(p) & (A-71)
Vo
where
. T
B (<kcose)
* & o Ue L{-kcos¢ A-72
0*(¢) ok L+(4kcos¢7f;(kcoswp)(B-kcos&) < (A-72)

The explicit form of the factors Li(s) may be obtained conveniently
from the procedures outlined in [13] or [14]. In the present instance,
it has been found that the procedure given by Weinstein [14] leads to
simple and useful expressions for Li(s). Without going through the
details of obtaining Li(s) via the method in [14], one may directly
write the expressions for Ry and D(¢) correspondin% to the surface wave
reflection and diffraction coefficients in the eJ®l time convention in
terms of the results for Li(s) as

V43
j u
;Jr— f du s1nfi u
By =~ SEhes e 0 (A-73)

and
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LT

J
D(¢) = & a sinhg l 2coshg (1+cos¢)
Vork coshg-cos¢ | (T+coshg)(coshe+cose)

2% : $-J& .
0 udu udu )
i ZHJ[ sinhu * 7w sinu 78]
o e v+iE
with
g =sinn™! 2 (A-75)

It is noted that Ry and D in Equations (A-73) and (A-74) for the edut
time dependence are the complex conjugates of Rﬁ and D* in Equation (A-67)
and Equation (A-71) for the e=1w! time dependence, respectively.

TMZ case

The excitation E; in this case is given by

Ey = e WHBX Ly |cm (A-76)

in which it is assumed that E; exists even for x > 0.

z
8= k|l - <}§!> st B0 S ey, (A-77a;A-77b)

as in Equations (A-40a;A-40b) for the TM, case with Zg=-jXc(Xc>0) corre-
sponding to capacitive reactance. Again an e~'4%t time dependence will
be employed in the analyiis to follow; however, the final results will
be presented for the eJ¥! time dependence. Let E, and E3.denote the
total and the scattered fields, respectively, then E; = E] + E3. The

total field E, satisfies ;
(Vi+ k) E, =0 5 fory20, [x| <= sy
BEZ ‘ ZO =
= ik ik 7; E, 3 fory=0andx =<0, (A-79)
E, =0 ; fory =0and x > 0, (A-80)

gS satisfies the radiation condition for e'1Wt time dependence.(A-81)
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One defines the Fourier transforms

pe. W 7%2 _Jr e e1Sx = éi +e> as in (A-54a) (A-82)
Vow 2o T
and
AT ¥ R . =ay
el - J[' g; e g = LE | via (B-76) . (A-83)
A Y21 (s+8)

Ez and EZ individually satisfy the wave equation in (A- 78). Thus,
Fourier transforming Equation (A-78) for Ei instead of E; yields

2 [
/3 +aled=0 ; A= “kz-s2 = iNs2k? (A-84)
\ay?

in which Im/A > 0. The solution to Equation (A-84) subject to
Equation (A-81) is

v afs) ™Y L w o, (A-85)

The inverse Fourier transform of Equation (A-85) leads to E;.

f -'lSX ; (A~86)

One may incorporate Equations (A-76) and (A~86) in the boundary con-
ditions of Equations (A-79) and (A-80) to obtain

NU‘l
\ll"

_j- G—1(S)A(S) e~ 15X 4 = Uy %9 (A-€7)

Jf A(s) e-isx ds = - Vﬁ;'eisx X =0 (A-88)
where

G'](s) = YA «ia = V) L'](s) , (see (A-62) for L(s)). (A-89)
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Equations (A-87) and (A-88) are a set of dual integral equations for

A(s) which may be solved via the method of factorization as in TE; case
treated earlier. Without presenting any details for the sake of brevity,
the result for A(s) is given by

1 G.(s)

As) = = TeaTETET A=30)
where G(s) = G+(s)G_(s) /n1ch G4(s) and G_(s) represent the Wiener-
Hofp factors of G(s). The A in Equation (A-89) may be factorized by

inspection, and the factor1zat1on of L(s) is known from the TE, case;
thus the factor1zat1on of G(s) is directly obtained. One may now write
Equation (A-86) a

3 e .
_ =i 1 ifk™=s” y _~isx _q
z > j Ts7eT © e ds . (A-91)

As in the TE, case, the pole of the integrand in Equation (A- 91) at
s=-8 yields a residue contribution only for x>0 which exactly cancels
the incident field for x>0, On the other hand, the pole at s=B yields
the reflected surface wave E ¥ for x<0.

EPS" = Re & SR . g < (A-92)
where

R® = e i R_= lim (s-B) G(s) = - iy (A-93)

E " 2a[6, (8)1 € s ¢

RE represents the reflection coefficient at (x=0, y=0) for the reflected
surface wave field.

The diffracted field E may be obtained by asymptotically approxi-

mating Lquatlan (A=91) via the method of steepest descent as done
earlier for h in the TEZ problem. Thus,

d +ikp

EZ n Di(¢) e/_ ; (A-94)
[6)
where
. M
ke " G(-kcose)
- 1ke CoS¢) Sing ’ i
D* T G, (~kcos¢ )G, (kcosw )(3-(@05¢) y B kCOswp. (A-95)
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As in the TE, case, the surface wave reflection and diffraction ,
coeff1c1ents Re and D may be explicitly written down for the eJ®t time |
convention as

2&
udu
{" sinhu
Re = § UE ke (A-96)
and
2 ¢-J&
- u . udu
J f sinhu 2 sinu
D(e) = j ¢ sing ' coshg 0 o+jg
Ve coshg-cos¢/ Ycosh&+cose
(A-97)
where
£ = sinh™! z (A-98)
and

RE and D for the ej“’t

RE and D* in Equations (A-93) and (A-95) for the e~ lut case, respectively.

time convention are the complex conjugates of

‘
Imwy

o7 7 |

Figure A-3. Contour of integration in the complex w-plane.
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APPENDIX III

SURFACE FIELDS IN THE CANONICAL PROBLEM OF A LINE
SOURCE ON A CIRCULAR CYLINDER COMPLETELY COVERED
WITH AN IMPEDANCE SURFACE

The geometrical configuration of the problem is illustrated in
Figure 7. The line source is a magnetjc current M which is either a
z-directed magnetic line source, or a ¢-directed magnetic line dipole;
as before the former represents the source for the TE, case; whereas,
the latter represents the source for the TM, case. The TE, case is
treated first, and it is followed by the treatment of the fMZ case.

TEZ or the axial slot case

The magnetic current M at Q' in this case is

M-z flesalele) (A-99)

and it generates only a E-component of the magnetic field which is
denoted by h,.

(v? + k2)hz = jkYo M S(p-a)é(s) 5 p > a
3 4 0< ¢ < 2n (A-100)

and

3h, R
T =k 7; h,|=0atp =a. (A-101)

Also, h; satisfies the radiation condition. Using the method of
Green's functions, one may obtain the following expression for h,: H

h,(p,¢) = - jkY MG (olp") 3 (A-102)
p'=a

where Gy (p|p') is a Green's function which satisfies the radiation
condition, and

(v%2 + k2) Gm(snl"' e 5(9'9')2&9‘¢')

in which » is the position vector of (p,$); and likewise p' is the position
vector of (p',¢'). Also,
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a6
L-Ep—"}-jkAGJ=0atp=a (A-104)

2
4 = Zi sy LZ_ = value of the surface impedance which
0 completely covers the cylinder;
Z, = free space impedance. (A-105)

The solution to Gy may be constructed via the methods presented in [10];
thus

©-je 2
6 (517") i E%E cosv(n-]9]|)

sSinvm
-“—Je {E— - Jkﬂ H kp}
+ (A-106)

where Hg )(kp) is the cylindrical Hankel function of the second kind,
and of order v. One may write

cosv(n-]¢]) _ "Z" ; E-J‘vm " e-iv@n-hﬂ o-Jvi2ne) (A-107)
2=0

sinvw

5

Physically, the above series corresponds to multiple encirclements of the
field around the cylinder in the azimuthal propagation representation

for Green's function Gy presented in Equation (A-106). Since one is
interested in applying the results of the present analysis to perfectly
conducting cylinders with a surface impedance cover of finite extent, the
effects of these multiple encirclements will be neglected. Thus, for

the present purposes one writes

Gm(EiE") = &m(swz') + multiply encircling wave contributions (A-108)
from which it follows that
mie 42 (g [erivleligminterlo)]
g (plp ) - ‘[- dv —

Tra
vl “e-je {[5% -5kadn$?) (ko )} e

a
(A-109)

and the field h, which corresponds to this non-encircling part is ﬁz.
Thus,
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hy(ose) = = 3KV, M & (p,0]2,0) (A-110)

epresents the non-encircling part of hz in terms of &m, in which
ém(p,¢;a,0) is given explicitly in Equation (A-109). Let

N 4 N
h,(0,¢) =h, +h, (A-111)
where thelﬁ% terms corresponds to the clockwise circumferential propagation
¢

term e~JV in Equation (A-109), whereas ﬁ; corr?apondT to the counter-
clockwise circumferentially propagating term e~Jv w=1o1) in Equation
(A-109). Defining

¢ ]
o e (52) (A-112;A-113;A-114)
2n-¢ |

"
™
[
=
<€

and as§¥ming that ka is sufficiently large, one may approximate Gy and
hence h; on the surface p=a, within the shadow region of the source at
Q' (p=a, ¢=0) as

ik
- N & W (r)e-‘]e -
Vi -jkay {—I._ 1 2 %
hy % c Mle %; -'-n-fd't T (A-115)
p=a == wy(T)Him == wy (1)
0
in which
FT_
= . ik 2
Cy & q8n Yo (A-116)
and
(2) - .9 4(2) _dk 117a: A
H (ka) ~ m/;wz(r), 5 Hv (ko) ™~ mn wz(r). (A-117a;A-117b)
The variables v and t are related through the transformation:
v o S2bB (A-117¢)

m

w2(t), and w%(r) are the Fock type Airy functions defined in [5]

(also see [6]). If the surface impedance Zg is inductively reactive,
then the large curved impedance surface will support an Elliot type
mode mentioned in Sections I and II. The field of this El1liot mode is
obtained by evaluating the residue of the integrand in Equation (A-115)
at t=19 which locates the Elliot mode pole of
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1
ZS *
wy(T)+m 2;’“2(‘)

Thus,
. zs
wé(ro) +jm Z; WZ(TO) =0, at T, (A-118)

while several papers have been written on the solution for 1o in

Equation (A-118), the one which appears to have dealt with this problem
in great detail is due to Logan [5]; and, Logan's results are used in the
present work. The value of ty is approximately given by (5]

3
$d ] 5 11 . i
T, % (g + o=t + + J* 329 e 3 92, (A-119)
8 Qo 3240 32900 )
where
z
q ¢ - jm zi : (A-120)
(o]

In addition to the root t=t, corresponding to the Elliot mode, there

are other roots of the equa%ion in (A-118§ which correspond to the set
of Watson modes which are characterized by a significant exponential
decay along their propagation paths. One is primarily interested in the
Elliot mode field in this study as mentioned in Section II-B, hence the
Watson type modes will not be discussed. Evaluating the residue at

1=1¢ yields the E1liot mode field corresponding to h; as:

£ (A-121)

which may be rewritten as

v}
hy=c, ML™e E . o tozat . (A-122)

nN —
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The quantities and y are given by:

B

L% = gnjk - 5% : 1 (A=123)

bl

and

coe m
y = k + T E (A-124)

in which m and 1y were previously defined in Equation (A-114) and
Equation (A-119), respectively. c, is defined in Equation (A-116).

The space wave, or the field directly radiated by the source may
be found by a stationary phase evaluation of the integral in Equation
(A-106) for the 1it regign after replacing COSv[ﬂ-l¢li in Equation
(A-]O?) by e'JV"c05v¢+jeJV|¢ sinvm, and by including only the term
eJVi¢isinvr ip this asymptotic, stationary phase evaluation., The
other term e~JVTcosvé gives rise to diffraction contributions arising
from the multiply encircling circumferentially propagating modes which
are not of int&rest ig this analysis as discussed earlier in the
evaluation of Gy or h; in Equation (A-109) and Equation (A-110). This
stationary phase evaluation leads to the geometrical optics approximation
for the field directly radiated by the slot as

% (0) e-jks'
h v c. MR(e 3 s'=Q'P
Z‘]it region o /s* Q' is at (a,0)

P is at (p,9). (A-125)

where cy is as in Equation (A-116), and R(¢) is the same as in Equation
(A-26) for the planar case with the exception that ¢ in Equation (A-125)
above is the complement of the angle ¢ in Equation (A-26) due to a
rotation of the coordinate systems in Figures 4 and 6 (or 7).

TMZ or the circumferential slot case

The magnetic current M at Q' in this case is

M= uslecalie)

)

which is a magnetic line dipole at Q', and it generates only a
z-component of the electric field which is denoted by e,. The field e,
may be expressed in terms of a Green's function Ge(p'|p) which satisfies
the radiation condition, the partial differential equation in (A-103),
and the boundary condition in Equation (A-106) with
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Zo

= . (A-126)

S

>
i
-<| —<
(@) w

The in Equation (A-126) is now the reciprocal of that in Equation
(A-105). The field e,(a,¢) on the surface_of the impedance covered
cylinder may be shown to be related to Ge(plo') by

e (a,¢) = - ¢ MIx EGe(EWE“)
' + (a,0) at Q' on surface
o + (a,¢) at P on surface. (A-127)

or

=Je (2)'
e,(a,®) = J g f dv i cosv(n-¢)

ma sinvm
Sl H%% - jk£| H\()Z)(kp)}
p=a

As before, employing Equation (A-107) and neglecting the multiply
encircling terms in ez, one obtains ez which excludes the effects of the
multiple encirclements as

(A-128)

e, = gz + multiply encircling terms (A-129)
where
N-jg H(2)I(ka) 3 .
e,(a,9) = - %M— dv o~ [E'JVI¢I+e'J“(2""¢IE].
: s : §oo e EDY
e Eg; - jka[H " (ke)
p=a
(A-130)
One may further express gz as
N - AV 3 N
ez(a,¢) .8 e (A-131)

in which g%)corresponds to the e'Jvi¢[ term and 3} corresponds to the

e'jv(i"' *l term in Equation (A-130). Then introducing the quantities,
w’, £- and m ?5 in Equations (A-112;A-113;A-114), and the Fock approxi=-
mations for Hv )(ka) in Equations (A-117a;A-117b), respectively, one
obtains:
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t
4 i ST Y o gt
o . S _ omJkay J—_k 1 2 3
e, ¥ ¢y T;M e %7‘-;3- f dt (A-132)
& (% 2”:> wy(1)
in which
B L ~
s o . (A-133)

If the surface impedance Zg is purely capacitive, then the large curved
impedance surface will support an Elliot type mode mentioned in
Sections I and II. The Elliot mode corresponds to the value of 1=1¢
for which

Z
1 . 0 % £
wy(t) +jm T wo(t,) = 0. (A-134)

This va]ue, 1=1g9 corresponds to the location of the pole of the Elliot
mode in the integrand of Equation (A-132). The root t=1, is obtained
via Equation (A-119) given by Logan [5] with

_ ; 0
q==-3m Z; ‘ (A-135)

Other roots of Equation (A-134) corresponding to a set of Watson modes
will not be discussed due to reasons mentioned in Section II. Evaluating
the residue at t=1y in Equation (A-132) leads to the following result

for the E11iot mode field.

Stk + Do yay®
¥ ki %o e a o
a,9) = -— (A-136)

%2 Zm Z 2, § i ’
To+m-z-—s-

which may be rewritten as
'JYt]

§3(2,0) = c M1 e £y et (A-137)

The quantities L®W and y are given by
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L = VBrik - § 2 Jgn—‘ (———-—7 (A-138)

and

The co in Equation (A-137) is defined previously in Equation (A-133),
and 1y is as in Equation (A-119) with q as in Equation (A-135).

The evaluation of the field directly radiated by the source in the
1it region is not described since it reduces to the geometrical optics
approximation as in the TEz case. Denoting this result for e;(p,¢) by
ez(p,¢) , one may write

‘]it region

e-jks'
)‘ Ve MR() =——; QP =5
1it region s+ Q' is at (a,0)

P is at (p,¢). (A-140)

gz(o,¢

in which ¢y, is as in Equation (A-137), and R(¢) is the same as in
Equation (2-45) for the planar TM; case except that the ¢ in Equation
(A-140) is the complement of the angle ¢ in Equation (A-45) due to a
rotation of the coordinate systems in Figures 4 and 6 (or 7).




APPENDIX IV

THE RADIATION BY AN EQUIVALENT LINE SOURCE AT A DISCONTINUITY
IN SURFACE IMPEDANCE ON A PERFECTLY CONDUCTING CIRCULAR
CYLINDER COVERED WITH A SURFACE IMPEDANCE PATCH

The geometry of this prob]em is illustrated in Figure 8.
Specifica]]y, the problem s to obta1n an approximate but accurate
expre551on for the fields u] and uy which are produced via dif-
fract1o f the anc1dent field ul from Q1. A similar set of diffracted
fields u and u” are also produced via diffraction of u! from Q2, but
for the sake of definiteness, one may analyze only the diffraction from
Q1 in this appendix; the results for the diffraction from Q2 would be
similar to those for the diffrag ion from Q. For an electrically large
cylinder, the diffracted field u§ on the 1it side of SBQj in the deep
1it region is taken to bgdcharacterized by the same diffraction coef-
ficient as in the field u~ which occurs in the problem of surface wave
diffraction by a two part impedance surface of Figure 5. The diffraction
coefficient D is defined in Equation (A-74) for the TE, case, and in
Equation (A-97) for the TM, case, in Appendix II. Thus, uy may be
written as in Equation (20).

_ -jks]
d?(P) v 31(01) D(é]) g = B S Q1P and P is on the 1it side
= of SBQ] in the deep 1it region.
(A-141)

The field a?(ag may be assumed to be produced by an equivalent magnetic
line current at Q) on a perfectly conducting or "unperturbed"
cylinder; i.e., on the same cy11nder as in Figure 8, but without the
surface impedance patch. Oncg 9 is found, it may be systematically
employed to obtain the field u39 on the shadow side of SBQy. The

TEz or the axial slot case w1l] be analyzed first; the TMz or the
circumferential slot case will be analyzed subsequent]y

TEZ case

8 magnetic field is entirely z-directed in this case, thus the
field uj(P) in Equation (A-141) mag be considered to be produced by a
z-directed magnetic line source MEY at Q on the "unperturbed" cylinder
as mentioned above. In this case, M®? is given by

6(c-4)6(@-¢0)

> v 8% Q] . (A-142)
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The z-directed magnetic field produced by M e of Equation (A-142) at Q'
on the unperturbed cylinder may be easily found to be given by [6]

-Jjks
i
2 ¢, M?q Req(s]) S sy = Q,P, and P is on the 1it side
1 of SBQ] in the deep 1it region (A-143)
where
K v i and R®(s) = 1 (A-144a;A-144b)

Comparing the RHS of Equation (A-141) with Equation (A-143), one obtains

e 31(01) e
M]q = e D(s,) = M]q(d?) i (A-145)

in which U (Q and D(87) are given in Equation (15) (also see Equations
(A-123) and (A-124)) and (A- 74? respectively. Consequentl M{9 depends
on the aspect angle §1, however this is acceptable since M€Y is only
an equivalent line source. The value of M 4(s7) at 67=0 would provide
the strength of the equ1xa1ent source wh1ch launches the surface ray
modes correspond1ng to uj” shown in Figure 8. The diffraction from the
sugface ray modes in turn produces the field U89 as in Figure 8. Thus,

i may be directly obtained via the results in [6] as indicated in
Equation (22).

h -jks
- -[a_+jk]2 JK3q
d?d & C Meq z L e p 1 BTy G e .

pd /s]

P in the deep shadow region on the
shadow side of SBQy; £1=Q1T1;
see Figure 8, (A-146)

and L Op, and a respect1ve1y correspond to Lh Dh, and a in [6].

In thg trans1t1on region adJacent to the shadow boundary SBB , one must
employ the Fock approximation in terms of g(+) as indicated 1n Equations
(24) and (25).
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™
, case

The electric field is entirely z-directed in this case, thus the
field u§(P) in Equation (A-141) m M% be considered to be produced by a
$o directed magnetic line dipole at Q' on the "unperturbed"
cylinder as mentioned above. Thus, in this case, M®9d is given by:

. 6(p-a)s(¢-¢ )
neq _ eq 0
W= = o My -

, at Q]. (A-148)

The z-directed electric field produced by €9 in Equation (A-148) at
Q' on the unperturbed cylinder is known to be [6]

-jks]
2g. M?q R®9( : ; Sy = QP and P is on the 1it side
& of SBQ, in the deep 1it region, (A-149)
where
= -‘]—k— . eq o~ 1
€, 3 =8~ i and R (6]) sing, (A-150);(A-151)

One may now find M]q by comparing Equation (A-149) with the RHS of
Equation (A-141). Thus,

i
ea Y (Q;) D(s,)

- : " (A-152)
1 _?7c0 s1n6]

in which 4’ ) and D(&87) are given in Equation ( Aso see Equations
(A-138) and (A 139)) ané (A- 97?, respectively. Thus, M in Equation

(A- 152) is also dependent on 67 just as for the TE, case discussed
earlier. Following a s1m11ar 11ne of reasoning as indicated for the

TE; case, the value of M] at 61=0 provides the strength of the equivalent
source which produces the field U$9d in the deep shadow region on the
shadow side of SBQy as shown in Figure 8. One notes from Equation (A-152)
that

T

o D(6 an(s
Mejé = 1im u?(gl) f i - St b ‘)~] ; (A-153)
7

2 c0 36

It is noted from Equation (A-97) however thga (67) is explicitly pro-
portional to sinéy and hence the value of M3 1= ) is trivially
calculated. Finally, from [6],

65




hﬁ T —— kit s bnos otk et - g

: -jks
N -[a_+jk]% IS,

nsd eq p 1 e

uy (P) ~c_ M L e £

P in the deep shadow region on the

shadow side of SBQy; £1=Q1Ty;

see Figure 8, (A-154)

where

T 1/2 (2)*
L) == e e o, (A-155)

and Ly, Dy, and ap respectively correspond to Lg, 0 and o} in [6]. In
the tEans?tion regign adjacent to SBQy one must emp?oy the Fock approxi-
mation in terms of g(+) as indicated in Equations (24) and (25).
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METRIC SYSTEM
BASE UNITS:

Quantity Unit S1 Symbol Formula

length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

SUPPLEMENTARY UNITS:
piane angle radian rad
sulid angle steradian sr

DERIVED UNITS:
Acceleration metre per second squared % m/s
actwvity (of a radioactive source| disintegration per second : (disintegration)/s
angular acceleration radian per second squared rad/s
angular velocity radian per second rad/s
daled square metre m
density kilogram per cubic metre kg/m
electr capacitance farad F A-sV
electrical conductance siemens S ANV
electric field strength volt per metre Vim
electric inductance henry H V-s/A
electric potential difference volt Y WIA
electric resistance ohm VIA
electromotive force volt Y W/A
energy wule ) N-m
entropy joule per kelvir. o JK
force newton N kg-m/s
frequen.y hertz Hz (cycle)'s
illuminance lux Ix Im/m
luminance candela per square metre g cd/m
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre .. A/m
magnetic flux weber Wb Vs
magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Js
pressure pascal Pa N/m
quantity of electricity coulomb C As
Guantity of heat joule | N-m
radiant intensity watt per steradian : Wist
specific heat joule per kilogeam-kelvin Jkg-K
stress pascal Pa N/m
thermal conducnuivity watt per metre kelvin Wim-K
velocity metre per second m's
viscosity, dynaniic. pascal-second Pa-s
viscosity. kinematic square metre per second m/s
vultage volt v WIA
volume cubic metre m
wavenumber reciprocal metre {wave)ym
woork joule ; N'm

SI PREFIXES.

Multiphication Factors Prefix SI Syrabol
1 000 000 100 O00 101! tora T
1 000 000 000 10* Rige G
1000000 10% mega M
1000 10" kilo k
100 10? hecto* h
10 10" deka* de
01 10! deci® d
no1r 10! conti® «
0oy a0 mill} m
000001 10 micro u
0000000001 10 Y nano n
0.000 000 000 001 10 1 plco r
060 D00 VOO HHO BNY 1 fomto
5060 000 000 00O OO0 D01 T atto L}

beoavinde dd where possible
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